翻訳と辞書
Words near each other
・ Riemannian geometry
・ Riemannian manifold
・ Riemannian Penrose inequality
・ Riemannian submanifold
・ Riemannian submersion
・ Riemannian theory
・ Riemann–Hilbert correspondence
・ Riemann–Hilbert problem
・ Riemann–Hurwitz formula
・ Riemann–Lebesgue lemma
・ Riemann–Liouville integral
・ Riemann–Roch theorem
・ Riemann–Roch theorem for smooth manifolds
・ Riemann–Roch theorem for surfaces
・ Riemann–Siegel formula
Riemann–Siegel theta function
・ Riemann–Silberstein vector
・ Riemann–Stieltjes integral
・ Riemann–von Mangoldt formula
・ Riemenschneider
・ Riemenstalden
・ Riemer Calhoun
・ Riemer See
・ Riemer van der Velde
・ Riemerella anatipestifer
・ Riemke
・ Riemke Ensing
・ Riems
・ Riemschneider thiocarbamate synthesis
・ Riemst


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Riemann–Siegel theta function : ウィキペディア英語版
Riemann–Siegel theta function
In mathematics, the Riemann–Siegel theta function is defined in terms of the Gamma function as
:\theta(t) = \arg \left(
\Gamma\left(\frac\right)
\right)
- \frac t
for real values of t. Here the argument is chosen in such a way that a continuous function is obtained and \theta(0)=0 holds, i.e., in the same way that the principal branch of the log Gamma function is defined.
It has an asymptotic expansion
:\theta(t) \sim \frac\log \frac - \frac - \frac+\frac+ \frac+\cdots
which is not convergent, but whose first few terms give a good approximation for t \gg 1. Its Taylor-series at 0 which converges for |t| < 1/2 is
\theta(t) = -\frac \log \pi + \sum_^ \frac\right) } \left(\frac\right)^
where \psi^ denotes the Polygamma function of order 2k.
The Riemann–Siegel theta function is of interest in studying the Riemann zeta function, since it can rotate the Riemann zeta function such that it becomes the totally real valued Z function on the critical line s = 1/2 + i t .
== Curve discussion ==

The Riemann–Siegel theta function is an odd real analytic function for real values of ''t''. It has 3 roots at 0 and \pm 17.8455995405\ldots and it is an increasing function for values |''t''| > 6.29, because it has exactly one minima and one maxima at \pm 6.289835988\ldots with absolute value
3.530972829\ldots. Lastly it has a unique inflection point at t=0 with \theta^\prime(0)= -\frac = -2.6860917\ldots where the theta function has its derivation minimum.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Riemann–Siegel theta function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.